Abstract:Deep learning (DL) has surpassed human performance on standard benchmarks, driving its widespread adoption in computer vision tasks. One such task is disparity estimation, estimating the disparity between matching pixels in stereo image pairs, which is crucial for safety-critical applications like medical surgeries and autonomous navigation. However, DL-based disparity estimation methods are highly susceptible to distribution shifts and adversarial attacks, raising concerns about their reliability and generalization. Despite these concerns, a standardized benchmark for evaluating the robustness of disparity estimation methods remains absent, hindering progress in the field. To address this gap, we introduce DispBench, a comprehensive benchmarking tool for systematically assessing the reliability of disparity estimation methods. DispBench evaluates robustness against synthetic image corruptions such as adversarial attacks and out-of-distribution shifts caused by 2D Common Corruptions across multiple datasets and diverse corruption scenarios. We conduct the most extensive performance and robustness analysis of disparity estimation methods to date, uncovering key correlations between accuracy, reliability, and generalization. Open-source code for DispBench: https://github.com/shashankskagnihotri/benchmarking_robustness/tree/disparity_estimation/final/disparity_estimation
Abstract:Deep learning (DL) models are widely used in real-world applications but remain vulnerable to distribution shifts, especially due to weather and lighting changes. Collecting diverse real-world data for testing the robustness of DL models is resource-intensive, making synthetic corruptions an attractive alternative for robustness testing. However, are synthetic corruptions a reliable proxy for real-world corruptions? To answer this, we conduct the largest benchmarking study on semantic segmentation models, comparing performance on real-world corruptions and synthetic corruptions datasets. Our results reveal a strong correlation in mean performance, supporting the use of synthetic corruptions for robustness evaluation. We further analyze corruption-specific correlations, providing key insights to understand when synthetic corruptions succeed in representing real-world corruptions. Open-source Code: https://github.com/shashankskagnihotri/benchmarking_robustness/tree/segmentation_david/semantic_segmentation
Abstract:Backgrounds in images play a major role in contributing to spurious correlations among different data points. Owing to aesthetic preferences of humans capturing the images, datasets can exhibit positional (location of the object within a given frame) and size (region-of-interest to image ratio) biases for different classes. In this paper, we show that these biases can impact how much a model relies on spurious features in the background to make its predictions. To better illustrate our findings, we propose a synthetic dataset derived from ImageNet1k, Hard-Spurious-ImageNet, which contains images with various backgrounds, object positions, and object sizes. By evaluating the dataset on different pretrained models, we find that most models rely heavily on spurious features in the background when the region-of-interest (ROI) to image ratio is small and the object is far from the center of the image. Moreover, we also show that current methods that aim to mitigate harmful spurious features, do not take into account these factors, hence fail to achieve considerable performance gains for worst-group accuracies when the size and location of core features in an image change.
Abstract:Deep neural networks (DNNs) have proven to be successful in various computer vision applications such that models even infer in safety-critical situations. Therefore, vision models have to behave in a robust way to disturbances such as noise or blur. While seminal benchmarks exist to evaluate model robustness to diverse corruptions, blur is often approximated in an overly simplistic way to model defocus, while ignoring the different blur kernel shapes that result from optical systems. To study model robustness against realistic optical blur effects, this paper proposes two datasets of blur corruptions, which we denote OpticsBench and LensCorruptions. OpticsBench examines primary aberrations such as coma, defocus, and astigmatism, i.e. aberrations that can be represented by varying a single parameter of Zernike polynomials. To go beyond the principled but synthetic setting of primary aberrations, LensCorruptions samples linear combinations in the vector space spanned by Zernike polynomials, corresponding to 100 real lenses. Evaluations for image classification and object detection on ImageNet and MSCOCO show that for a variety of different pre-trained models, the performance on OpticsBench and LensCorruptions varies significantly, indicating the need to consider realistic image corruptions to evaluate a model's robustness against blur.
Abstract:With the rise of generative AI, synthesizing figures from text captions becomes a compelling application. However, achieving high geometric precision and editability requires representing figures as graphics programs in languages like TikZ, and aligned training data (i.e., graphics programs with captions) remains scarce. Meanwhile, large amounts of unaligned graphics programs and captioned raster images are more readily available. We reconcile these disparate data sources by presenting TikZero, which decouples graphics program generation from text understanding by using image representations as an intermediary bridge. It enables independent training on graphics programs and captioned images and allows for zero-shot text-guided graphics program synthesis during inference. We show that our method substantially outperforms baselines that can only operate with caption-aligned graphics programs. Furthermore, when leveraging caption-aligned graphics programs as a complementary training signal, TikZero matches or exceeds the performance of much larger models, including commercial systems like GPT-4o. Our code, datasets, and select models are publicly available.
Abstract:Climate change is one of the most pressing challenges of the 21st century, sparking widespread discourse across social media platforms. Activists, policymakers, and researchers seek to understand public sentiment and narratives while access to social media data has become increasingly restricted in the post-API era. In this study, we analyze a dataset of climate change-related tweets from X (formerly Twitter) shared in 2019, containing 730k tweets along with the shared images. Our approach integrates statistical analysis, image classification, object detection, and sentiment analysis to explore visual narratives in climate discourse. Additionally, we introduce a graphical user interface (GUI) to facilitate interactive data exploration. Our findings reveal key themes in climate communication, highlight sentiment divergence between images and text, and underscore the strengths and limitations of foundation models in analyzing social media imagery. By releasing our code and tools, we aim to support future research on the intersection of climate change, social media, and computer vision.
Abstract:Label Smoothing (LS) is widely adopted to curb overconfidence in neural network predictions and enhance generalization. However, previous research shows that LS can force feature representations into excessively tight clusters, eroding intra-class distinctions. More recent findings suggest that LS also induces overconfidence in misclassifications, yet the precise mechanism remained unclear. In this work, we decompose the loss term introduced by LS, revealing two key components: (i) a regularization term that functions only when the prediction is correct, and (ii) an error-enhancement term that emerges under misclassifications. This latter term compels the model to reinforce incorrect predictions with exaggerated certainty, further collapsing the feature space. To address these issues, we propose Max Suppression (MaxSup), which uniformly applies the intended regularization to both correct and incorrect predictions by penalizing the top-1 logit instead of the ground-truth logit. Through feature analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Extensive experiments on image classification and downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization.
Abstract:The performance of neural networks increases steadily, but our understanding of their decision-making lags behind. Concept Bottleneck Models (CBMs) address this issue by incorporating human-understandable concepts into the prediction process, thereby enhancing transparency and interpretability. Since existing approaches often rely on large language models (LLMs) to infer concepts, their results may contain inaccurate or incomplete mappings, especially in complex visual domains. We introduce visually Grounded Concept Bottleneck Models (GCBM), which derive concepts on the image level using segmentation and detection foundation models. Our method generates inherently interpretable concepts, which can be grounded in the input image using attribution methods, allowing interpretations to be traced back to the image plane. We show that GCBM concepts are meaningful interpretability vehicles, which aid our understanding of model embedding spaces. GCBMs allow users to control the granularity, number, and naming of concepts, providing flexibility and are easily adaptable to new datasets without pre-training or additional data needed. Prediction accuracy is within 0.3-6% of the linear probe and GCBMs perform especially well for fine-grained classification interpretability on CUB, due to their dataset specificity. Our code is available on https://github.com/KathPra/GCBM.
Abstract:Visual framing analysis is a key method in social sciences for determining common themes and concepts in a given discourse. To reduce manual effort, image clustering can significantly speed up the annotation process. In this work, we phrase the clustering task as a Minimum Cost Multicut Problem [MP]. Solutions to the MP have been shown to provide clusterings that maximize the posterior probability, solely from provided local, pairwise probabilities of two images belonging to the same cluster. We discuss the efficacy of numerous embedding spaces to detect visual frames and show its superiority over other clustering methods. To this end, we employ the climate change dataset \textit{ClimateTV} which contains images commonly used for visual frame analysis. For broad visual frames, DINOv2 is a suitable embedding space, while ConvNeXt V2 returns a larger number of clusters which contain fine-grain differences, i.e. speech and protest. Our insights into embedding space differences in combination with the optimal clustering - by definition - advances automated visual frame detection. Our code can be found at https://github.com/KathPra/MP4VisualFrameDetection.
Abstract:While being very successful in solving many downstream tasks, the application of deep neural networks is limited in real-life scenarios because of their susceptibility to domain shifts such as common corruptions, and adversarial attacks. The existence of adversarial examples and data corruption significantly reduces the performance of deep classification models. Researchers have made strides in developing robust neural architectures to bolster decisions of deep classifiers. However, most of these works rely on effective adversarial training methods, and predominantly focus on overall model robustness, disregarding class-wise differences in robustness, which are critical. Exploiting weakly robust classes is a potential avenue for attackers to fool the image recognition models. Therefore, this study investigates class-to-class biases across adversarially trained robust classification models to understand their latent space structures and analyze their strong and weak class-wise properties. We further assess the robustness of classes against common corruptions and adversarial attacks, recognizing that class vulnerability extends beyond the number of correct classifications for a specific class. We find that the number of false positives of classes as specific target classes significantly impacts their vulnerability to attacks. Through our analysis on the Class False Positive Score, we assess a fair evaluation of how susceptible each class is to misclassification.